On the behavior of Lagrange multipliers in convex and non-convex infeasible interior point methods∗
نویسندگان
چکیده
This paper analyzes sequences generated by infeasible interior point methods. In convex and nonconvex settings, we prove that moving the primal feasibility at the same rate as complementarity will ensure that the Lagrange multiplier sequence will remain bounded, provided the limit point of the primal sequence has a Lagrange multiplier, without constraint qualification assumptions. We also show that maximal complementarity holds, which guarantees the algorithm finds a strictly complementary solution, if one exists. Alternatively, in the convex case, if the primal feasibility is reduced too fast and the set of Lagrange multipliers is unbounded, then the Lagrange multiplier sequence generated will be unbounded. Conversely, if the primal feasibility is reduced too slowly, the algorithm will find a minimally complementary solution. We also demonstrate that the dual variables of the interior point solver IPOPT become unnecessarily large on Netlib problems, and we attribute this to the solver reducing the constraint violation too quickly.
منابع مشابه
Modified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملGlobal convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA Method for Solving Convex Quadratic Programming Problems Based on Differential-algebraic equations
In this paper, a new model based on differential-algebraic equations(DAEs) for solving convex quadratic programming(CQP) problems is proposed. It is proved that the new approach is guaranteed to generate optimal solutions for this class of optimization problems. This paper also shows that the conventional interior point methods for solving (CQP) problems can be viewed as a special case of the n...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کامل